Physics (PhD)

Graduate School

Program Website

Graduate Field

Physics

Program Description

The graduate physics program is designed to give students an adequate background in the concepts and techniques of theoretical and experimental physics in preparation for careers at the most advanced level in research or teaching.

Research and Study Opportunities

Theoretical physics - Condensed Matter: Subjects for study include mesoscopic systems and random matrix theory; collective properties of Bose and Fermi condensates; density functional theory (electronic and liquid) with applications to surface growth and interfaces, defects in solids, matter under extreme conditions, and nanophysics; statistical mechanics and critical phenomena applied to crackling noise, dynamical systems, biological systems, and quasicrystals; inverse problems in protein crystallography; strongly interacting electron physics of magnetism, superconductors, and disordered systems.

Theoretical physics - Particle and Astrophysics: Physics of extra dimensions and supersymmetry, mechanisms for electroweak symmetry breaking, collider phenomenology; lattice gauge theories; particle astrophysics and cosmology; string theory and its application to cosmology, brane world; field theories; astrophysics; black holes; and general relativity.

Experimental particle physics: Our research uses the Large Hadron Collider (LHC) at CERN, which is the first collider to explore the TeV energy scale, where the Standard Model of particle physics must break down unless new phenomena appear. Cornell is a member of CMS, one of two detector collaborations for elementary particle physics at the LHC. Research topics include mechanisms for electroweak symmetry breaking, including the Higgs mechanism and alternatives, scenarios for physics beyond the Standard Model such as supersymmetry, extra dimensions and new strong interactions, top quark physics, and dark matter. Cornellians are designing online software for the pixel detector, developing strategies for identifying electrons in the electromagnetic calorimeter, writing analysis software capable of handling petabytes of data distributed world-wide, and ensuring that the trigger will successfully pluck new physics out of the huge background of conventional processes. In the next few years, they will also start developing hardware upgrades of the pixels and the trigger.

Accelerator Physics: The electron-positron collider CESR at Cornell University is used as a test-bed for accelerator physics and for X-ray science. Having this large accelerator on campus provides a unique opportunity for students interested in many aspects of accelerator physics. Currently, CESR is testing design concepts for the Linear Collider, which will be the world's largest high-energy physics accelerator. Accelerator research also includes an active program to develop the superconducting radio-frequency cavities needed for the next generation of electron-positron colliders and for future X-ray facilities. The group is also developing a new X-ray facility, the Energy Recovery Linac, for the Cornell campus that offers students the unique opportunity to join a large-scale science project in an early state where many phenomena are still unknown, many parameters need to be computed, and many important decisions are being made.

Experimental condensed matter physics: Subjects of study include nanostructures and quantum transport; superfluid, solid, and supersolid helium; atomic-resolution STM and tunneling spectroscopy; photoemission spectroscopy; high-temperature superconductivity; nanomagnetics; new forms of scanning-probe microscopy; nanomechanical systems and limits of quantum m&

Concentrations 

  • Experimental physics
  • Physics
  • Theoretical physics